finance_pca

ℹ️ Dataset info

Description: PCA transformation of finance data. Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset

Labels: owner: upgini dataset_type: public dataset_source: markets

Search keys: DATE

Row count: 6,630

ℹ️ Features info:

f_financial_date_finance_pca_0_b9ec1c26

Datatype: FLOAT Description: Finance data PCA component 0

f_financial_date_finance_pca_1_38f83e84

Datatype: FLOAT Description: Finance data PCA component 1

f_financial_date_finance_pca_2_fe70a225

Datatype: FLOAT Description: Finance data PCA component 2

f_financial_date_finance_pca_3_092fe927

Datatype: FLOAT Description: Finance data PCA component 3

f_financial_date_finance_pca_4_ea45eea8

Datatype: FLOAT Description: Finance data PCA component 4


Need help with Docs? Ask in Upgini slack community

Last updated