cbpol_pca

ℹ️ Dataset info

Description: PCA transformation of central bank policy rates data. Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset

Labels: owner: upgini dataset_type: public dataset_source: economics

Search keys: DATE

Row count: 6,173

ℹ️ Features info:

f_economic_date_cbpol_pca_0_ef0bbff4

Datatype: FLOAT Description: Central bank policy rates data PCA component 0

f_economic_date_cbpol_pca_1_31e5f62c

Datatype: FLOAT Description: Central bank policy rates data PCA component 1

f_economic_date_cbpol_pca_2_33d6e3fc

Datatype: FLOAT Description: Central bank policy rates data PCA component 2

f_economic_date_cbpol_pca_3_27450634

Datatype: FLOAT Description: Central bank policy rates data PCA component 3

f_economic_date_cbpol_pca_4_be889d56

Datatype: FLOAT Description: Central bank policy rates data PCA component 4

f_economic_date_cbpol_pca_5_c87ba63a

Datatype: FLOAT Description: Central bank policy rates data PCA component 5

f_economic_date_cbpol_pca_6_da6f4e43

Datatype: FLOAT Description: Central bank policy rates data PCA component 6

f_economic_date_cbpol_pca_7_3e8b0ecf

Datatype: FLOAT Description: Central bank policy rates data PCA component 7

f_economic_date_cbpol_pca_8_d2d1d87a

Datatype: FLOAT Description: Central bank policy rates data PCA component 8

f_economic_date_cbpol_pca_9_bde660b4

Datatype: FLOAT Description: Central bank policy rates data PCA component 9


Need help with Docs? Ask in Upgini slack community

Last updated