cci_pca

ℹ️ Dataset info

Description: PCA transformation of Consumer Confidence Index data. Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset

Labels: owner: upgini dataset_type: public dataset_source: economics

Search keys: DATE

Row count: 8,563

ℹ️ Features info:

f_economic_date_cci_pca_0_4b266261

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 0

f_economic_date_cci_pca_1_b2db99f5

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 1

f_economic_date_cci_pca_2_7441c668

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 2

f_economic_date_cci_pca_3_10646e17

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 3

f_economic_date_cci_pca_4_49e8923d

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 4

f_economic_date_cci_pca_5_b433b3c8

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 5

f_economic_date_cci_pca_6_aa7c1005

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 6

f_economic_date_cci_pca_7_17261951

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 7

f_economic_date_cci_pca_8_54959a61

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 8

f_economic_date_cci_pca_9_7f5e64a7

Datatype: FLOAT Description: Consumer Confidence Index data PCA component 9


Need help with Docs? Ask in Upgini slack community

Last updated