cpi_pca

ℹ️ Dataset info

Description: PCA transformation of Consumer Price Index data. Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset

Labels: owner: upgini dataset_type: public dataset_source: economics

Search keys: DATE

Row count: 8,563

ℹ️ Features info:

f_economic_date_cpi_pca_0_af5ec5cf

Datatype: FLOAT Description: Consumer Price Index data PCA component 0

f_economic_date_cpi_pca_1_d83cca70

Datatype: FLOAT Description: Consumer Price Index data PCA component 1

f_economic_date_cpi_pca_2_10a24520

Datatype: FLOAT Description: Consumer Price Index data PCA component 2

f_economic_date_cpi_pca_3_e2d8916c

Datatype: FLOAT Description: Consumer Price Index data PCA component 3

f_economic_date_cpi_pca_4_ffa727bd

Datatype: FLOAT Description: Consumer Price Index data PCA component 4

f_economic_date_cpi_pca_5_e2bcc984

Datatype: FLOAT Description: Consumer Price Index data PCA component 5

f_economic_date_cpi_pca_6_10ce8957

Datatype: FLOAT Description: Consumer Price Index data PCA component 6

f_economic_date_cpi_pca_7_58e87c83

Datatype: FLOAT Description: Consumer Price Index data PCA component 7

f_economic_date_cpi_pca_8_d5503fe1

Datatype: FLOAT Description: Consumer Price Index data PCA component 8

f_economic_date_cpi_pca_9_3c7905ac

Datatype: FLOAT Description: Consumer Price Index data PCA component 9


Need help with Docs? Ask in Upgini slack community

Last updated